Adaptive artificial companions learning from users' feedback

نویسندگان

  • Abir-Beatrice Karami
  • Karim Sehaba
  • Benoît Encelle
چکیده

Until recently, propositions on the subject of intelligent service companions, like robots, were mostly user and environment independent. Our work is part of the FUI-RoboPopuli project, which concentrates on endowing entertainment companion robots with adaptive and social behavior. More precisely, we focus on the capacity of an intelligent system to learn how to personalize and adapt its behavior/actions according to its interaction situation that describes (a) the current user attributes, and (b) the current environment attributes. Our approach is based on models of the type of Markov decision processes (MDPs) that are largely used for adaptive robot applications. In order to have, as quickly as possible, a relevant adaptive behavior whatever the interaction situation, several approaches were proposed to decrease the sample complexity required to learn the MDP model, including its reward function. We argue that systems that are based on detecting important attributes for each decision are more likely to converge faster than others. To this end, we present two algorithms to learn the MDP reward function through analyzing interaction traces (i.e., the interaction history between the robot and its users including their feedback regarding the robot actions). The first algorithm is direct, certain and does not particularly exploit its knowledge to adapt to unknown situations (i.e., unknown users’ and/ or environment settings). The second is able to detect the importance of certain situation attributes in the adaptation process. The detection of important attributes is used to speed up the learning process and helps by generalizing the learned reward function to unknown situations. In this paper, we present both learning algorithms, simulated experiments and an experiment with the EMOX (EMOtion eXchange) robot that was upgraded during the FUI-RoboPopuli project. The results of those experiments prove that when dealing with adaptive decision making, the detection of important attributes for each decision speeds up the learning process and help in achieving convergence using fewer samples. We also present a scaling analysis through the simulated experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Adaptive Educational Hypermedia ‎Recommender Accommodating User’s Learning ‎Style and Web Page Features‎

Personalized recommenders have proved to be of use as a solution to reduce the information overload ‎problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers ‎suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. ‎Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...

متن کامل

Web pages ranking algorithm based on reinforcement learning and user feedback

The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...

متن کامل

Active Open Learner Models as Animal Companions: Motivating Children to Learn through Interacting with My-Pet and Our-Pet

This pilot study reports how to portray open learner models as animal companions in order to motivate children to learn in the digital classroom environment. To meet two challenges of motivation and interactivity for open learner models, the concept of open learner models as animal companions is proposed based on the emotional attachment of humans towards pets. Animal companions adopt three str...

متن کامل

Affect Recognition for Interactive Companions

Affect sensitivity is an important requirement for artificial companions to be capable of engaging in social interaction with human users. This paper provides a general overview of some of the issues arising from the design of an affect recognition framework for artificial companions. Limitations and challenges are discussed with respect to other capabilities of companions and real world scenar...

متن کامل

Designing Socially Intelligent Virtual Companions

Virtual companions that interact with users in a socially complex environment require a wide range of social skills. Displaying curiosity is simultaneously a factor to improve a companion’s believability and to unobtrusively affect the user’s activities over time. Curiosity represents a drive to know new things. It is a major driving force for engaging learners in active learning. Existing rese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adaptive Behaviour

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2016